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New plausible kinematic foundations of quantum dynamics are discussed in a 
heuristic manner in which the quantum rule stems directly from the non-Abelian 
configuration symmetries of a system. Upon quantizing the 'complete' 
configuration symmetry group itself, irreducible generalized configuration-state 
representations can be calculated, whose transition amplitudes yield the 
propagation kernel. These states result from solving a set of 'generalized 
Schr6dinger equations' corresponding to the superselection rules dictated by the 
quantized group. The propagation kernel of the system is thus obtained as an 
invariant Hurwitz integral, defined over the manifold of the complete symmetry 
group. A heuristic argument is given in favor of this approach to non-Abelian 
quantum kinematics, in which sums over physical world lines are evaluated 
instead of sums over arbitrary paths, for obtaining the propagation kernel of 
quantum systems having a classical Lagrangian analog. The attained quantum 
kinematic formalism, however, is completely general and does not depend on 
this particular interpretation. Nevertheless, the heuristic argument strongly 
suggests that non-Abelian quantum kinematics contains the formalism of standard 
nonrelativistic quantum mechanics as a very special case. No examples of the 
issues involved are presented in this paper. 

1. I N T R O D U C T I O N  

This paper concerns non-Abelian quantum kinematics and arose in the 
context of an undertaking to formulate quantum dynamics within the concep- 
tual framework used in the quantum theory of  symmetries (Krause, 1994a). 
The discovery of quantum mechanics is one of the greatest achievements of  
physics, but it is also one of the most difficult to grasp, even for those who 
have used it for decades. This circumstance makes it all the more necessary 
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to explore the meaning of quantum mechanics from as many different perspec- 
tives as one may feel reasonable to conceive. Here we explore one of them, 
looking at a possible intimate connection between quantum mechanics and 
group theory. 

The main idea pursued in this paper is the following. It seems that a 
compelling basis for having a new quantum formalism is provided by the 
extended role of configuration space invariance in the quantum description 
of a system. As we know, the superposition principle of quantum mechanics 
implies a different role for the configuration symmetries (as compared with 
the role they play in classical mechanics), since these symmetries are carded 
by the configuration states of the system in their linear unitary transformation 
laws. These states are thus classified as irreducible representations of the 
corresponding symmetry group. So it looks plausible to think of this fact as 
one of the most demanding features of quantum mechanics. The same idea 
has been considered recently, as a primary manifestation of symmetry, by 
Bohr and Ulfbeck (1995). (A new quantum formalism is proposed by these 
authors in which the probability laws originate in geometric correlations 
between group variables. However, they do not quantize the group variables 
as we do. This procedure separates two theories which, having many basic 
ideas in common, are radically different.) 

There is now no afortiori reason to demand the quantum rule to depend 
on some corresponding formal rule of classical mechanics, as it was unavoid- 
able indeed 70 years ago (cf., Jammer, 1989). Strictly speaking, most physi- 
cally relevant quantum systems known today have no classical analog at all. 
Hence, as a matter of principle, one should learn how to deal with them at 
the quantum level, relinquishing the correspondence principle. Moreover, 
physicists do now think directly in terms of quantal notions. Recent 'deductive 
interpretations' of quantum mechanics reveal this fact, making a strong con- 
trast with the Copenhagen interpretation as to the status of classical physics 
(Omn~s, 1994). It is rather clear that, if one puts aside the main conceptual 
working frames of classical mechanics, one may still rely on the symmetry 
principles and try to use them in a typical quantum-theoretic fashion without 
recourse to a classical analog. This is tantamount to considering the symmetry 
laws obeyed by quantum systems as the most demanding physical information 
concerning their mechanical structure and dynamical behavior. 

Following this idea, it is the purpose of the present paper (a) to consider 
generalized irreducible configuration-state representations of a system, (b) 
to explore the transition probability amplitudes between such states, (c) to 
show that a satisfactory quantum formalism may emerge from quantizing 
the configuration symmetry group itself, and (d) to emphasize that group 
quantization provides the irreducible set of fundamental variables of the 
theory. We shall examine a theoretical framework within which such an 
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endeavor can be achieved. This formalism stems from an assessment of 
symmetry in quantum physics that differs substantially from the current views 
on symmetry prevailing in the literature (see, for instance, Fushchich and 
Nikitin, 1994). 

In this fashion, the formulation of quantum dynamics introduced in this 
paper brings the quantization rule under a new group-theoretic perspective, 
which depends only on the symmetry laws of mechanics. Such a 'quantization- 
through-the-symmetry' program is conceivable because Lie groups can be 
'quantized' quite generally by means of well-defined geometric procedures 
(Krause, 1991). This attempt entails a direct generalization of the Abelian 
kinematic standpoint underlying the standard formalism of quantum mechan- 
ics. As is well known, quantum kinematics was successfully initiated by 
Weyl (Weyl, 1931). Heisenberg's first paper on 'matrix mechanics' also 
addresses quantum kinematics (cf. van der Waerden, 1968). Weyl's most 
interesting achievement on this subject was his discussion of Heisenberg's 
kinematics as a unitary representation of the Abelian group of rigid transla- 
tions in a Cartesian scaffolding. Indeed, his deduction of the fundamental 
commutation relations used in the canonical quantization procedure still 
remains as almost the best known contribution of (Abelian) quantum kinemat- 
ics. On the other hand, Weyl's generalized non-Abelian group-theoretic quan- 
tization rule is not flexible enough for the purposes of physics, for it contains 
the fundamental commutators only implicitly (Daubechies, 1983). The interest 
of having a non-Abelian generalization of quantum kinematics emerges, for 
instance, as a required construct when one faces the problem of quantizing 
a system which is primarily described by noncommuting dynamical momenta 
satisfying a physically relevant non-Abelian Lie algebra (Kogut, 1980; 
Yamada, 1982). 

Let us here remark also that in non-Abelian quantum kinematics as 
introduced in this paper it is not necessary to innovate in the foundation 
principles of quantum mechanics in general. These principles stand on firm 
physical ground, and we will innovate slightly by extending only one of them. 
Namely, the time evolution postulate (yielding the Schr'Odinger equation) will 
be here generalized into a symmetry postulate leading to a system of invariant 
wave equations, all standing on the same footing, within which the Schr6d- 
inger equation (if any) belongs (Krause, 1994a). In the current formalism of 
Hamiltonian quantum mechanics, time is the sole observable not represented 
by an operator in Hilbert space; rather, it enters the theory as a c-number 
parameter describing the evolution of wave functions. This rather peculiar 
feature has far-reaching consequences indeed. It means, for instance, that for 
the construction of quantum theories of spacetime, the choice of the time 
variable becomes a fundamental difficulty. In fact, an intriguing conflict thus 
arises between Hamiltonian quantum mechanics and the general covariance 
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of spacetime theories, such as the theory of general relativity, as is well 
known and has been discussed by several authors (Isham and Kushar, 1985; 
Hartle, 1988a, b, 1991; Gell-Mann and Hartle, 1992; Yamada and Takagi, 
1991a,b, 1992) [for recent discussions on the 'problem of time' see also 
various articles in Ashtekar and Stachel (1991)]. It seems that, to circumvent 
these fundamental difficulties, a radical change in our approach to quantiza- 
tion may be in order. 

Much remains to be said on this subject matter, to be sure. However, it 
is preferable tO discuss the most general ideas and mathematical techniques 
entertained in non-Abelian quantum kinematics elsewhere, once we are in 
possession of some physical intuition on which the proposed formalism can 
be expected to be founded. So we devote this paper to giving only a cursory 
introduction to the essential ideas of our approach in a purely heuristic manner, 
with no pretension toward mathematical rigor or physical completeness. In 
this sense, we shall here concentrate on looking at a physical motivation for 
the present approach to quantum dynamics, which we believe deserves a 
special discussion by itself. It is hoped that the intuitive (albeit consistent) 
mathematics used in this paper will not distract the reader from the physical 
contents of the ideas. Indeed, this introduction should give an overall intuitive 
grasp of the subject matter in a synoptic setting. 

The contents of this paper are as follows. Section 2 is devoted to studying 
symmetries and propagation kernels. (This study will lead us to an interesting 
heuristic problem.) In Section 2.1 we introduce the new concept of the 
'complete symmetry group' of a system. In Section 2.2 the main features of 
'sums over paths' are briefly summarized; these are then generalized into 
'sums over word lines' in Section 2.3. We next explain this idea in Section 
2.4, where we consider general superpositions of 'continuous' transition 
amplitudes, and in Section 2.5, which is a very sketchy discussion of the 
meaning of 'world line measurements' in quantum mechanics. In this fashion, 
relating both notions (i.e., 'complete symmetries' and 'sums over world 
lines'), we pose the problem tackled in this paper; namely, to represent the 
propagation kernel as an invariant integral of world lines over the complete 
symmetry group (Section 2.6). Section 3 is a synopsis of the main ideas on 
which the non-Abelian quantum kinematic foundations of quantum dynamics 
rest. (This approach yields a satisfactory, though heuristic, solution to the 
posed problem.) Quantum kinematics is rudimentarily addressed in Section 
3.1, stressing the fundamental role played by superselection rules stemming 
from the 'complete' group. Section 3.2 is a short study of 'irreducible configu- 
ration ray representations' (which are in fact the heart of the theory). Configu- 
ration transition amplitudes and their relations to the theory of gauge symmetry 
in classical Lagrangian mechanics are discussed in Sections 3.3 and 3.4, 
respectively. (Here we touch again on Feynman's postulate, from which we 
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started.) Finally, Section 3.5 contains an intuitive discussion of  the role 
played by quantum fluctuations and their possible connections with world- 
line symmetries. In Section 4 we present some concluding remarks. 

For the sake of brevity we do not present examples of quantum kinemat- 
ics in this paper, since these are always rather lengthy to work out (cf. 
Krause, 1986, 1988, 1995, 1996). Work is in progress concerning the quantum 
kinematic theory of the complete symmetry group of the classical Kepler 
system, which was introduced recently in the literature (Krause, 1994b). 
Other applications of the formalism will be considered elsewhere. 

2. S Y M M E T R I E S  AND PROPAGATION K E R N E L S  

In order to develop a quantization method based on the symmetry laws 
of dynamics, our starting idea is the concept of the complete symmetry group 
of a system (Krause, 1994b). We will review this idea for systems having a 
classical Lagrangian analog. On the other hand, the most outstanding result 
of the new quantization method is that it yields the propagation kernel as 
an invariant group integral that sweeps the whole manifold of allowable 
world lines (Krause, 1994a). Since this result is the consequence of the 
complete action of the group, it seems advisable to consider the possible 
relations between these two physical notions. The formal study of these 
relations will lead us to pose an interesting problem. 

2.1. The Complete Symmetry Group of a System 

We first examine the symmetry group. To this end, we need to introduce 
some notation. Henceforth, G denotes a non-Abelian r-dimensional Lie group 
acting in the configuration space X of a system. It will be sufficient to think 
of X as a homogeneous space of G. In X one has a preferred set of coordinates 
x = (x 1 . . . . .  x") ~ X, determined up to the transformations available in G, say 

x '~ = f~(x; q) ~ X (2.1) 

ix = 1 . . . . .  n, where q = (qi . . . . .  qr) denotes the parameters of  the group. 
These transformations are kinematical automorphisms, which, by hypothesis, 
keep invariant the dynamical description of the system. Of course, they are 
endowed with the group property so that f~[f(x;  q); q'] = f~[x; g(q'; q)] 
holds. Here we have written 

q,,a = g~(q,; q) ~ M(G) (2.2) 

with a = 1 . . . . .  r, which entails the group multiplication law for the parame- 
ters on the group manifold M(G). The point e = (e I . . . . .  e r) ~ M(G) labels 
the identity element of G, and we write ~ = O(q) ~ M(G) to denote that 



852 Krause 

unique point attached to q which labels the inverse element of the element 
of G labeled by q. Thus, one has g"[q; g(q'; q")] = ga[g(q; q,); q,,] as well 
as ga(q; e) = ga(e; q) = qa and ga(q; q) = ga(~; q) = e a. For the sake of 
simplicity, henceforth we assume that G is a noncompact, connected, and 
simply connected Lie group, and that the q's are real essential parameters 
maintaining everywhere a one-to-one correspondence with the elements of 
the group. [Concerning this rather strong assumption, see Krause (1991).] 
Note that the free and transitive action of G in X means that the diffeomorph- 
isms x ---> x' = f(x; q) entail a faithful realization of the group. To proceed, 
all one needs to know is the faithful realization of G in X. However, it will 
do just as well if the example of a general configuration spacetime (Triimper, 
1983) is kept in mind for visualizing X, as we will do in what follows. Thus 
we write x = (t, x) ~ X. 

Another question that needs some attention is the concept of symmetry 
itself. The notion of 'the complete symmetry group of a system' is more 
compelling for physics than the current notion of symmetry used hitherto. 
The main feature of this new concept is to characterize a system by the 
symmetry law it obeys, in a strictly specific manner (Krause, 1994b). One 
says that G is a 'complete' symmetry group of a given system defined in X 
if, and only if, the special realization of G: x ---> x' = f(x; q) E X keeps 
invariant the equations of motion of the system, and only of that particular 
system. In classical mechanics, this means that the allowable world lines of 
the system become transformed into one another under the complete group 
of diffeomorphisms defining G in X. In this sense, the complete symmetry 
action of the group contains implicitly all the essential information concerning 
the dynamical structure, and may be used as a faithful theoretical representa- 
tive of the system itself. This notion demands the fulfilment of more tightened 
conditions than those required by the traditional Lie (and non-Lie) concepts 
of symmetry, which need not be specific to a given system. Let us mention 
here that, in general, the group realizations found in classical mechanics by 
the standard methods (see, e.g., Olver, 1986) fail to be 'complete.' For linear 
Newtonian systems, one can easily obtain the complete group operating in 
the manifold of their solutions (Aguirre and Krause, 1988a, b; Aguirre et al., 
1992). Whether such a specific realization of a complete symmetry group 
exists for any given nonlinear Newtonian system is not known (besides the 
Keplerian case). 

2.2.  S u m  over  Paths  

Let us recall the standard situation in the Feynman path-integral approach 
(Feynman, 1948). We will here briefly recall the main features of this well- 
known general quantization procedure because there is a very natural way 
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of extending it (as a tool for calculating configuration transition amplitudes), 
on which we shall work presently. 

In quantum mechanics, the main task is to calculate the propagation 
kernel. For closed systems, the propagator corresponds to the transition proba- 
bility amplitude between two events in configuration spacetime. Since the 
configuration spacetime vectors Ix) = It, x) are equal-time complete, one 
may write (xlx') as a 'sum over paths.' To include the contributions made 
by all paths, one must provide some normalizing factor in order to obtain a 
limit to the particular integration process involved. With this aim, Feynman 
introduced the following postulates: 

(El)  Each path p(x; x') = (x ~ xl ~ "'" ~ XN-I --~ X') = U~V:lAp~ 
contributes to (xlx') with a measure ~N[P] which is the product of the local 
normalizing factors ~[Apj] of the segments Api C p of that path. 

(E2) The phase A[p] of the contribution made by a given path p is the 
total classical action A[p] = EJY=I A[Apj] of the system, evaluated over that 
particular path (in units of h). 

This means that the probability amplitude for the system to go from x to x', 
following a particular path p(x; x'), is given by the product of the probability 
amplitudes for the system to go through xj_ ~ and xj. Therefore, if no successive 
position measurements have been actually performed on the system (at times 
tl, t2 . . . . .  tn-0, one has 

(XIX')N = ~ ~3N[p(x; X')]e (i/h)alp(x;x')l 
p 

N 
= ~ I-~ ~[Apj] e~i/~)atapi] l apjcp (2.3) 

p j = l  

which has a well-known meaning and yields a functional path integral when 
one takes the appropriate limit as N ~ ~. Thus one writes, in a symbolic 
notation, 

(xlx') = I ~[p(x; x')]e (i/h)Ap(x;x') (2.4) 

where Ap(x; x ' )  = Alp(x; x')] is the classical action of the system, evaluated 
along p(x; x') between the extreme points x and x'. The 'measure' 5~[p(x; 
x')] is in general complex and depends on the dynamics. These things are, 
of course, well known. [An outline of the general theory of path integrals in 
quantum mechanics and how to solve them, reflecting the progress made 
during recent years, can be found, for instance, in Grosche and Steiner, 
(1995).] 
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2.3. S u m  o v e r  W o r l d  L ines  

Now we can begin our understanding of the new quantum kinematic 
formalism with the consideration of a system which has a classical analog 
evolving along well-defined world lines in X. In the sequel we assume that 
equation (2.1) implies that G acts as the complete symmetry group of  the 
system. We next examine some changes in physical outlook which may be 
introduced by this strong notion of symmetry in quantum mechanics. 

The following remark is made by Feynman and Hibbs (1965): "It is 
possible to define the path in a somewhat more elegant manner. Instead of 
straight lines between the points j and j + 1, we could use sections of the 
classical orbit. Then we could say that A is the minimum value of the integral 
of the Lagrangian over all the paths which go through the specified points 
xj = (tj, xj). With this definition no recourse is made to arbitrary straight 
lines." (They elaborate a bit on this idea, producing a mathematical technique 
that is very useful for computing the sum over paths in some rather spe- 
cial situations.) 

Let us pursue this 
means that to define a 
lines Apj = xj - xj-l, 

idea under a completely general perspective. First, it 
subset of all possible paths, instead of using straight 
we could use world-line sections pertaining to that 

particular world line w = w(xj_ l; xi) which goes through the points xj_ ~ and 
xj; i.e., we can approximate Apj ~ Awj and A[Apj] ~ A[Awj] everywhere 
on each chosen subset of paths. Second, this idea requires the introduction 
of a new local normalizing factor ~[Apy] ~ ~ x';  Awj] such that one has 

~[Apj]e(i~)atapj ] = ~ X'; Awj]e(~)AtawJllAwj~apj (2.5) 

Clearly, the local normalizing factor W must be now a function of  the extreme 
points x and x' ,  because in general Awj C w(xj-l; xj) ~ we(x; x'), where we 
is that unique word  line which goes through x and x' .  Hence, one interprets 
W[x, x' ;  Awj] exp{(i/h)A[Awj] } as the conditional probability amplitude for 
the system to have gone from xj_~ to x i obeying its own law of  motion, given 
the total transition x ---> x' .  If one draws a picture for visualizing this peculiar 
idea, one sees that all the allowable world lines of  the system make a 
contribution to the total transition probability amplitude (xlx'). 

But then we can change the physical look of the problem. Instead of 
thinking of  an imaginary experiment in which successive position measure- 
ments could be performed on the system (at times h, t2 . . . . .  tN- t), one rather 
thinks of an imaginary experiment in which one could determine if the system 
has evolved on a given world line w, either at the intervals t~ - t, t2 - h, 
. . .  or t' - tN-~. Note that the apparatus setup used in these two kinds of 
'gedanken' experiments are completely different. (The mechanical principles 
invoked in the second experiment are very simple; cf. below.) With an 
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experiment of this kind in mind, according to the laws of quantum mechanics, 
one has 

N 
~flfN[X, X'; w]e (~'~)atwl = 1-[ ~f[x, x'; Awj]e(~)a[Aw~llawjCw (2.6) 

j=l  

which yields the probability amplitude for the system to go from event x to 
x', having 'moved' on a particular world line w sometime between t and t'. 
Therefore, if no experiment is performed at all, one calculates the configura- 
tion transition amplitude (x lx ' ) s  as a 'sum over world lines'; namely, one 
sets (symbolically) 

(X IX')N = E ~ N[X' X' ; w]e (i/h)aIwl (2.7) 
w 

instead of equation (2.3). In fact, equations (2.3) and (2.7) are two examples 
of the general rule of superposition of probability amplitudes in quantum 
mechanics. 

2.4. General Superposition of Continuous Probability Amplitudes 

To understand further the physics on which the heuristic argument rests, 
let us provide some explanations for the two basic notions used in a 'sum 
over world lines.' We first recall the main ideas concerning amplitude superpo- 
sitions in quantum mechanics for the important case of continuous spectra. 
('World-line measurements' are briefly considered in the next section.) 

Let us look at a more general formula to describe transition amplitudes, 
which still contains the essential features of a Feynman path integral. Let 
the x's be Cartesian coordinates and let B denote a complete set of compatible 
time-independent observables in the Schrrdinger picture of the system, such 
that [X, B] :/: 0. We write, rather sketchily, Bib)  = b ib)  and consider that 
the spectrum of B is continuous. We next introduce the Heisenberg picture: 
Ib) ---> Ib) = It, b) and B ---> B(t). Thus, the Ib)'s (like the Ix)'s) are only 
equal-time complete and equal-time orthogonal. 

Our first aim is to calculate a transition amplitude (XlX')N upon the 
condition that the following N-step experiment has been performed on the 
system: 

Xt ---> Ix) ---> Bo) ----> Ibl) ----> "'" ---> IbN-1) --4 B(s) --'> IbN) ---> XC ---> Ix') 

whose meaning is clear: Xt is an initial preparation of configuration state; 
then, the system interacts successively N times with a "B-meter" (which is 
set "on" only at times tl < t2 < "'" < tN, with t < tl and tN < t'); finally, 
Xc denotes a detection of the outcoming configuration state. It might be 
argued that such an idealized experiment borders on fiction; actually, it 
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does so no more than those thought experiments currently used in quantum 
mechanics. We define a 'b-path' p(b; b') = (b = bl ---) b2 ---) "'" ---) bN-l 

bN = b')  for each possible outcome of the N-step experiment, so that in 
every actual run of the apparatus one has a probability-density amplitude 
given by 

~Px.p(b,b').x' = (xl bl)(bl I bz) "'" (bN-l I bN)(bNIX') (2.8) 

Upon the actual performance of such experiment, the conditional probability 
density for observing a particular path p(b; b') (given the total observed 
transition x --> x') would read PN[p(b; b')l(x, x')] = 1%.p(b:b'),' 12, whence 
one obtains the total conditional probability PN(Xlx')  (for the transition x --) 
x') by integrating this expression N times over the whole spectrum of the 
observable B. 

However, if no measurements are made between x and x', in quantum 
mechanics one has the well-known and remarkable law (Feynman, 1948) 

(xlX')N 

= ' d(b,).., e(bN)(x,bO(b, b > . . .  

I N 

N fbj N--I = 1~ d(bj),b,(X) 1--[ (bklbk+~)t~u(X') 
j=l  k=l 

---" s Il lb(X)~N[X , X'  ; p(b; b ' ) ] ~ f f , ( x ' ) e  (i/h)~a[p(b;b')] 
p 

(2.9) 

This has been written as a 'generalized sum over b-paths.' To this end, one 
introduces a suitable notation. (1) two 'wave functions' 

% ( x )  = (x lb , ) ,  Ob.(x') = (x' lbN) (2.10) 

which are defined at the extreme configurations; (2) the 'local contribu- 
tions,' say 

[x, x' ; Abk]e (u~)*tabk) = {bk I bk+l) (2.11) 

made by each intermediate transition amplitude in going from x to x'; (3) 
the 'total contribution' of a given path p(b; b'), 

N - I  

~N[X, X'; p(b; b')]e (/~)'~tp(b'b')l = V[ {bklbk+l) (2.12) 
k = l  
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given by the product of the intermediate transition amplitudes along that path 
(as it must be); and finally, (4) the symbol denoting the 'sum over paths' 

N L ~] = ~ d(bj) (2.13) 
p j=l  

which is just a shorthand notation. 
In this manner, the continuous limit of equation (2.9) must be invoked 

here, since the 'gedanken' experiment is now replaced by purely virtual 
processes. Thus, taking N---) ~, one writes the generalfunctionalpath integral 
for the desired transition probability amplitude in the following fashion: 

(XlX')~b;b') = I ~[X, X' ; p(b; b')]t~b(x)d~,(x')e ~)~tp~b;b')l (2.14) 

where one must integrate over all continuous paths p(b; b') between two 
given limit values b and b '  of B at t and t'. One notices the need to define 
two wave functions t~b(X) = (xlb) and t~b,(X') = (X' I b ')  at the extreme points, 
which result from the limiting process. In fact, equation (2.14) entails a 
functional correlation between these two wave functions. For instance, if B 
= P = (linear momentum operators), then one has two correlated plane 
waves at the extremes: d~p(X) = exp[(i/h)x, p] and t~p,(X') = exp[(i/h)x', p']. 
In this approach, the real task for quantum dynamics is to provide a sensible 
meaning for the local transition amplitudes defined in equation (2.11); these 
are the conditional probability amplitudes for the system to make the 'virtual 
quantum j u m p s '  bk ---) bk§ while actually evolving freely from x to x' 
according to its own dynamical structure. 

Note that one may also think of equation (2.14) as exhibiting a kind of  
'decoherence effect' of the system's wave function as it evolves freely (that 
is, obeying its own dynamical laws), while suffering quantum fluctuations 
owing to the environment (see Omn~s, 1992, and references quoted therein). 
Notwithstanding the fact that the functional integral shown in equation (2.14) 
is not in the usual form of a 'decoherent' transition amplitude, the underlying 
ideas seem to be very close. We just mention this plausible conjecture here, 
for it might deserve a careful study. 

Notwithstanding all its mathematical drawbacks, the general expression 
arrived at in equation (2.14) symbolizes a correct quantum mechanical result. 
The physical content of such integrals is independent of their mathematical 
awkwardness. As a matter of fact, Feynman's path integrals in quantum 
mechanics are a special instance of equation (2.14). What makes them simpler 
(and more manageable, up to a point) is the fact that in the Feynman spacetime 
approach to quantum mechanics one uses I b) = Ix) = It, x) and one makes 
a physically sound choice at the step of equation (2.11). However this may 



858 Krause 

be, we observe that the 'sum over world-lines' stated in equation (2.7) is 
also a particular case of equation (2.9); that is, before one takes the very 
critical limit N ~ ~. 

2.5. World-Line Measurements in Quantum Mechanics 

We have not yet discussed the principles underlying the performance 
of a world-line measurement, which is the other conceptual ingredient leading 
to equation (2.7). To make things easy, let us consider a Newtonian system. 

The world lines depend on a set of constants of integration, say { c~, 13 }, 
which may be subjected to arbitrary continuous variations. Thus, one may 
consider the world lines themselves as the set of 'primitive curves' WcL(t, 
x; c~, 13) = 0, with 'tangents' given by WcL = 0. In this way, the differential 
equations of motion are just the 'eliminants' of  a and 13 between WcL = 0 
and I/VcL = 0. This means, however, that one has ~ = A[t, x(t), ~(t)] and [3 
= B[t, x(t), ~(t)], quite generally. These are basic constants of motion, such 
that all mechanical constants of motion (such as energy or some momenta) 
are functions thereof, and vice versa. Therefore, a 'world-line measurement' 
in classical mechanics means that one determines a well-defined history of 
a system in X by measuring enough mechanical constants of motion in a given 
state of the system. (It is not strictly necessary to measure simultaneously x 
and Yi in order to determine a world line.) 

Of course, owing to quantum fluctuations, there are no world lines in 
quantum mechanics. Because of the same fact, there are no paths either. 
However, it is rather clear that the analog of a 'world-line measurement' in 
quantum mechanics corresponds precisely to the simultaneous measurement 
of a complete set of compatible constants of motion in a given state of  the 
system. This fact brings to the fore the conservation laws and superselection 
rules obeyed by the system; namely, the symmetry laws of quantum mechanics. 

2.6. The Propagation Kernel as an Invariant Group-Integral 

Notwithstanding these explanations, it seems that the idea of changing 
the 'sum over all paths' into a 'sum over all world lines,' albeit elegant 
and formally conceivable, raises more problems than it can actually solve. 
Nonetheless, it is worth facing these problems. 

The first problem is that one needs a continuous parametrization to 
label the allowable world lines of the classical analog so that, in the limit N 

~, equation (2.7) yields a well-defined integral. It is immediate that the 
best (if not the only) way of tackling this problem is to label the world lines 
as Wq by means of the parameters q = (qt . . . . .  q r )  of the complete symmetry 
group G of the system. Thus we write, for any given world line 

Wq(X; x') = We[f(x; q); f(x'  ; q)] (2.15) 
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where We(X; x') denotes the classical history between the extreme points x 
and x' andf(x; q) is given in equation (2.1). Bear in mind that the mappings 
We(X; X') --~ Wq(X; X') correspond to an exhaustive group of diffeomorphisms 
acting over the whole world-line manifold, which is indeed isomorphic with 
G, for any given pair of events (x, x'). Furthermore, since the action of G 
is complete in X, no 'extraneous' world lines are obtained by means of 
these mappings. 

In this fashion, given a complete symmetry group, we are in position 
to conceive a limit N ---> ~ to equation (2.7). Thus we expect to be able to 
write the propagation kernel as a group-theoretic integral of the general form 

(x Ix') = I dp~(q) W(x, x' ; q)e(i/~)Aq ~x'x') (2.1 6) 

This integral has essentially the same physical contents as the corresponding 
Feynman functional path integral. Observe that in equation (2.16) it is enough 
to require that dl~(q) be the Hurwitz left-invariant measure of G in M(G). In 
this way, as q sweeps the group manifold, the integral picks up the contribu- 
tions made by all world lines Wq(X; x'), with a 'measure density' W(x, x'; q) 
defined in M(G), and with a phase function given by 

Aq(x, x ' )  = A[f(x; q);f(x'; q)] (2.17) 

in units of h, as it must be according to Feynman's postulate, whence these 
ideas stem. 

In summary, within the heuristic approach leading to equation (2.16), 
we see that the only problem left is to find the appropriate measure density 
W(x, x'; q). This problem belongs to the theory of symmetries in quantum 
mechanics. Notwithstanding the fact that this is a fundamental question on 
the system dynamics, if the action of G is complete in X, this question 
becomes automatically reduced to a problem in quantum kinematics. This 
issue states our program, for it is in this sense that we search for a theory 
that, in the last analysis, entails a geometrization of quantum dynamics. 

3. SYNOPSIS: QUANTUM KINEMATICS AND DYNAMICS 

We devote this part of the paper to a solution to the heuristic problem 
posed in the previous sections. Like the problem itself, the proposed solution 
is suggested by our previous work [especially Krause (1986, 1988)]. Due to 
considerations of space, our presentation will be rather schematic. 

3.1. Non-Abe l ian  Q u a n t u m  Kinemat ics  

In order to find such a theory within which the integral stated in equation 
(2.16) can be actually evaluated, we concentrate on the bracket that figures 
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in the left-hand side of that equation. The reason for this is the following. 
Lie group theory affords a nontrivial resolution of the identity, i.e., 

I = I d~(q)Iq)(ql (3.1) 

The Lie group resolution of the identity is completely general and independent 
of the physical states of the system. It is enough to notice here that the vectors 
I q) belong to the continuous orthogonal complete basis of the rigged Hilbert 
space ~(G) that carries the left regular representation of G (Krause, 1991, 
1994a). They satisfy the covariant transformation law 

Uk(q') l q) = e(i~)+k(q':q) l g(q ' ; q)) (3.2) 

where Uk(q) = exp{-(ilh)qaL~a~)} denotes the representative operators and 
~bk(q'; q) is a two-cocycle, belonging to a central extension by U(1) of the 
left regular representation of the group (Krause, 1987). The generators L~ k) 
satisfy the well-known extended Lie algebra (Bargmann, 1954). In fact, 
unitary ray representations must be used in quantum kinematics as far as 
possible. 

Starting from the fact that G is a complete symmetry group acting in 
X, quantum kinematics is able to produce a quantum model that meets all 
the essential features required in equation (2.16). This calls for many mathe- 
matical refinements to be taken up elsewhere. Nonetheless, the procedure 
leading to this achievement is conceptually simple. It consists mainly in 
two steps: 

(QK.1) One first quantizes the group G itself, on the group manifold 
M(G). 

(QK.2) One next finds irreducible configuration representations of G 
in X. 

Using this conceptual scheme, one arrives at a reasonable solution to the 
problem stated above. We next sketch these two steps. 

The first step (QK.1) means that one introduces a complete set of 
generalized position operators q~ ---> Qa = Qa+ on the group manifold (a = 
1 . . . . .  r) such that Qalq) = qalq) holds. These operators obey the following 
covariant law under the action of the group: 

U[(q)QaUk(q) = ga(q; Q) = I dlx(q') I q')ga(q; q')(q' I (3.3) 

Therefore, as an immediate consequence of this law, they satisfy generalized 
Heisenberg commutation relations with the generators of the (left) regular 
ray representation (Krause, 1985): 

[a~, L~ k)] = ihR'~(a) (3.4) 
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Here R'~(q) = limq,-oe O~g~(q'; q) stands for the right transport matrix for 
contravariant vectors in M(G). Such explicit commutation relations are of 
potential value for physics. In particular, if G is the Abelian group of space 
translations (and the parameters are canonical), equations (3.4) become the 
standard Heisenberg commutation relations. In this sense, it seems interesting 
to remark that there is no way to arrive at the generalized commutators (3.4) 
by means of the usual canonical quantization procedure. 

It must be borne in mind that the set of  operators {Q~ . . . . .  Qr; Lt~), 
. . . .  L~k)}, and not just the set of generators {Lt k) . . . . .  L~rk)}, affords the 
irreducible set of  basic observables characterizing the (rigged) Hilbert space 
~(G).  Indeed, for a complete symmetry group, it turns out as a necessary 
condition that all dynamical variables of the theory are functions of the Q's 
and the L's (Krause, 1994a). One should also notice that the rigged Hilbert 
space that carries the quantum kinematic models is provided by the dynami- 
cally complete group itself. 

From the standpoint of our present interest, the main reason for defining 
position operators in M(G) is that equations (3.4) allow us to obtain a maximal 
set of compatible superselection rule operators S~ = Sty, [S,~, S~] = 0, with 
o~, [3 = 1 . . . . .  s < r. This set is in fact larger than the traditional set of 
Casimir operators, which is all one has when one does not quantize the group, 
and includes them as a proper subset (Krause, 1991, 1993a). For any given 
noncompact non-Abelian Lie group G the operators S~ = S~,(Q; L ~k)) are 
known functions of the Q's and the L's which commute with all the L's: [S,, 
L~ )] = 0. Thus, one has 

U~(q)SaUk(q) = S~, (3.5) 

for all q E M(G). Hence, if one solves the simultaneous eigenvalue equations 

S,~I~) = ~ ,1~)  (3.6) 

one obtains a maximal decomposition of the regular representation into irre- 
ducible representations carried by the eigenvectors t~,) ~ ~ ,  where each 
~ is an invariant subspace of ~(G).  

One then introduces a very natural postulate in order for physics to 
make contact with group theory; namely, one requires that the only allowable 
physical states of  the system are eigenvectors of  the superselection rule 
operators (Krause, 1994a). This makes ~(G) into an incoherent Hilbert space 
carrying the irreducible physical models of the system. Moreover, in this 
fashion, if X corresponds to an 'external' configuration space, an interesting 
isotopic structure comes to the fore in its own right [for details, see 
Krause (1993b)]. 
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3.2. Irreducible Configuration Representations 

Accordingly, from this point of view, the fundamental problem consists 
essentially in finding configuration representations of the complete action of 
G in X, carried by vectors I x) ~ x E X, Ix) E ~(G), such that something like 

(xlx') = I dl~(q) (xlqXqlx') = I dl-~(q) W(x, x'; q)e(i~)Aq (x'x') (3.7) 

can be expected to hold. 
We then come to the fundamental 'dynamical' step (QK.2) (which, 

however, is also pure kinematics). In our previous work (Krause, 1994a) it 
is proved that, within the general formalism developed in step (QK.1), one 
can calculate physical configuration states Ix; ~) = Ix ~ . . . . .  xn; ~ . . . . .  ~s) 
which are in one-to-one correspondence with the points x ~ X. Such states 
carry a configuration ray representation, since they obey the following covari- 
ant kinematic law with respect to the complete action of G in X: 

Uk(q) Ix; ~) = e (i/h)~k(x;q) If(x; q); ~) (3.8) 

The exponent function ~Pk(X; q) is a local real phase, stemming from the 
central ray representation of G, and may be calculated once the functions 
+k(q'; q) and f(x; q) are known. These vectors describe physical states of 
the system evolving in configuration spacetime, for they also satisfy the 
superselection rules 

S~ Ix; ~) = ~ Ix; ~) (3.9) 

Therefore, they carry an irreducible configuration ray representation of the 
complete action of G in X, i.e., Ix; ~) ~ ~, .  

Clearly, to obtain these irreducible configuration states is the main task 
in the quantum kinematic approach to dynamics. This is achieved in the 
following fashion. The known functional form of the superselection operators 
S~(Q; L (k)) as well as the definition of the associated wave function in configu- 
ration spacetime 

t~,(x) = lim (x; ~lq) = (x; ele) (3.10) 
q--->e 

allow one to write in Xthe system of simultaneous wave equations correspond- 
ing to the superselection rule equations (3.9): 

~)(x)~,(x) = e,~t~(x) (3.11) 

The form of the 'scalar operators' 57~)(x) ~ S~(Q; L(k)), which are partial 
differential operators acting in X, is calculated in the usual, manner (see, 
e.g., Cornwell, 1989). We call these equations in the system of generalized 
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SchrOdinger equations. They play the fundamental role in the theory, for 
solving them yields the irreducible configuration vectors, which read 

Ix; e) = I dp~(q) ~*[f(x; -~)]e~Un)~k~X;~)lq) (3.12) 

These configuration states describe a quantum dynamical model of the system 
for which the action of G is complete in X, and only of that particular system. 
It must be underlined here that no 'generalized configuration operators' (i.e., 
x ~ ~ X ~) have been used to this end. In other words, in the kinematic 
approach to dynamics one does not need to 'quantize' the configuration 
spacetime coordinates x = (x L . . . . .  x"); they all appear on the same footing, 
as c-number parameters labeling the physical states of the system, as required 
by the 'relativity theory' of G in X (Mariwalla, 1975). In this sense, the 
present approach is in fact more akin to quantum field theory. 

Furthermore, for an isolated system time translation is a symmetry trans- 
formation and therefore the usual Schr~dinger equation is obtained automati- 
cally as one of the generalized wave equations (3.11) stemming from t --~ t' 
= t + qO. This means that the known functional form of the associated 
superselection operator, say S~k)(t, x) ~ S0(Q; L~k)), once substituted into 
(3.11), allows one the explicit calculation of the Hamiltonian operator of 
the system, within the quantum kinematic model itself, without recourse to 
a prequantized classical analog. [How this approach actually works can be 
seen in the examples presented in Krause (1986, 1988, 1996).] 

3.3. Configuration Transition Amplitudes 
Equations (3.11) and (3.12) are in fact the keys leading to quantum 

dynamics, because the desired transition amplitudes follow immediately. 
Indeed, from (3.1) and (3.2) one obtains 

{x; elx ' ;  e ')  

= f dl~(q) (x; 

= f dl~(q) (x; 
) 

~.lq)(qlx'; ~') 

I Uk(q) I e)(e I U[(q) Ix'; e') 

= I dp~(q) •x;  ~); e le)(e If(x'; ~); e'>e <~)['p~x';~)-~k~x;~)l (3.13) 

where we have used the property U~(q) le) = I q). Thus one ends with an 
invariant integral over the group manifold; i.e., 

I * ~ (//h)[q~k(x q) ~k(x q)l ( x ; e l x ' ; e ' ) =  dlx(q)~[f(x;-~)]qJ,,[f(x;'~)]e . ' 7 -  ;- (3.14) 
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which yields the desired transition amplitudes between the irreducible config- 
uration eigenstates corresponding to the system of generalized Schr~Sdinger 
equations. 

This result has the required form shown in the general formula (2.14). 
The 'general sum over paths' has been here evaluated as a 'sum over q' [q 

M(G)]; in this way one ensures a 'sum over all world lines.' We also note 
that the problem set by the 'two wave functions' which must be defined at 
the extreme configuration points (x, x') becomes solved in quantum kinematics 
in a precise manner. 

Let us here only remark that the transition amplitude (3.14) must be 
P . . consistent with the orthogonal property (r - r r ~') = 0, which 

follows from (3.9). This means that in evaluating this integral one necessarily 
obtains a delta function ~(')(r - ~'), which factorizes out as a consequence 
of the superselection rules. (We have here assumed continuous spectra for 
all the superselection operators.) This is a peculiar property of the present 
approach; it shows that every quantum kinematic model calculated along 
these lines yields a theory which is already 'regular.' 

3A. Gauge Symmetries in Lagrangian Mechanics 

Hence, the question arises as to what are the possible relations between 
the sum-over-world-line transition amplitude (2.16) and the quantum-kine- 
matic transition amplitude shown in (3.14). Interestingly enough, the answer 
to this question comes from classical mechanics. 

Several years ago, L~vy-Leblond (1964) discussed the Lagrangian gauge 
problem from the standpoint of the group-theoretic foundations of classical 
mechanics. The starting point of his analysis is the action integral A(x; x') 
of the system. He proceeds to study the conditions for the equations of motion 
to be invariant under a non-Abclian noncompact Lie group G of kinematic 
automorphisms, acting freely and transitively in X, as in equation (2.1). In 
this fashion, L~vy-Leblond explores the consequences of the following gauge 
transformation of the action: 

A[f(x; q);f(x'; q)] = A(x; x') + q~k(x'; q) - tpk(x; q) (3.15) 

induced by the elements of G, which keeps the Euler-Lagrange equations 
invariant. With these assumptions, Levy-Leblond shows that there is enough 
information to calculate the allowable 'classical gauge functions' q~k(x; q). 
Thus, he develops the mathematical formalism to this end, which depends 
exclusively on the structure of G and on the functions f(x; q) describing the 
action of the group in configuration spacetime. 

Now, it turns out that Levy-Leblond's classical method for obtaining 
the gauge function q~k(X; q) that appears in (3.15) is exactly the same as the 
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quantum kinematic method for obtaining the exponent function q~k(X; q), that 
figures in (3.8) [which is developed in Krause (1994a)], i.e., both functions 
are just equal, and they are defined up to the same gauge freedom. 

Hence, we can substitute from (3.15) into (3.14) quite rigorously, and 
therefore the quantum-kinematic configuration transition amplitude of a 
Lagrangian system is given by 

(x; elx'; e') = I dlx(q) ~*[f(x; ~)]t~,[f(x'; q)]e (i/~)tAq(x;x')-A(x;x')l (3.16) 

which has the expected form (2.16) of a 'sum over world lines.' In fact, the 
particular case of a quantum system which has a classical Lagrangian analog 
becomes described by introducing the following measure density over the 
group manifold: 

W,~,(x'x'; q) = t~*[f(x; ~)]~J,,[f(x'; "q)]e -(i/h)A(x;x') (3.17) 

in order to embrace the world-line manifold of the system. 
An interesting feature appearing in (3.16) is the difference in the action 

Aq(x; x') - A(x; x'). As we see, in quantum kinematics, it is not just the 
value of the action over the transformed world line itself [i.e., A~(x; x')] that 
yields the effective physical phase of the world-line contributions to the 
transition probability amplitude; rather, it is the difference with the value of 
the corresponding classical action A(x; x') that does the job. 

3.5. W h y  World  Lines? 

Since the Feynman approach to propagators has become so important 
in modem quantum theories, it seems worthwhile to compare the intuitive 
picture of quantum fluctuations underlying both approaches. We deem the 
group-theoretic result stated in (3.14) as something deeply rooted in the 
quantum formalism. For this reason, we want to discuss finally a possible 
physical significance of this result, although in a rough, purely intuitive 
manner. 

According to the Feynman approach, one visualizes the system as evolv- 
ing from configuration spacetime point x to point x' along all conceivable 
piecewise continuous curves connecting these two events, whether these 
curves are consistent with the equations of motion or not. (In fact, a Feynman 
path integral is a clever device for summing up all the contributions made 
by 'quantum fluctuations' and thus obtaining the desired propagator.) On a 
purely intuitive level, however, one wonders if the Feynman picture is pushing 
too far the formal analogy of the effects of quantum fluctuations with some 
kind of 'Brownian motion.' Indeed, at this level of thought it would seem 
more "realistic" to think that the system evolves permanently under given 
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effective forces and therefore every quantum fluctuation makes it jump from 
one allowable configuration world line into another. 

Given a configuration event x = (t, x) ~ X, in classical mechanics there 
are infinitely many world lines [with suitable parameters (et, 13)] which go 
through x. Hence, given two events x and x' there is in general one, and only 
one, curve in X that goes through these two points, owing to the equations 
of motion. (We may here disregard some exceptional cases to this rule.) 
Therefore, given a particular world line wx through x, the classical probability 
of finding the system at x' is either zero or one in usual circumstances. In 
quantum mechanics, however, there is a continuous probability amplitude 
for the system to go freely from x to x', whatever its state may be at x. This 
is due to spontaneous quantum fluctuations arising from the environment; as 
we know, no interaction with an apparatus is the 'cause' of this effect. 

So, we can say that the main difference between the Feynman and the 
quantum-kinematic "pictorial" interpretation of this feature is the following. 
According to quantum kinematics, the system evolves permanently under its 
own law of force, but the quantum fluctuations (schematically denoted as 
stochastic events xl, x2, x3 . . . .  ) derail the system, which thus jumps from 
one allowable world line into another. These effects may be mathematically 
described, in a completely consistent manner, as a 'mysterious' physical 
action of the adequate symmetry group on the states of the system. In fact, 
each quantum fluctuation of a free system corresponds to a symmetry opera- 
tion, since it changes the state, but does not change the very physical nature 
of the system. In fancy language, one could claim that we do not know really 
what quantum fluctuations are; but we know what they do. In other words, 
because of the simultaneous local presence of both mechanical entities (i.e., 
the continuous applied forces and the permanent quantum fluctuations) the 
system can go from x to x' following any piecewise continuous curve (x --) 
Xl --) x2 --) "'" ---) x') whose segments belong to the admissible word  lines. 
The sum of the contributions made by all physically fluctuating world lines 
would then be given precisely by equation (3.14). Notwithstanding the fact 
that the Feynman construct for (xlx') is not strictly deductive (as is the 
quantum kinematic one), both descriptions must give the same answer. This 
may be so because in the standard path-integral approach one introduces a 
suitable normalizing measure which lessens the 'nonphysical contributions' 
present in the functional integral. 

4. CONCLUDING REMARKS 

We have sketched a procedure by which non-Abelian quantum kinemat- 
ics can produce a meaningful approach to quantum dynamics. This endeavor 
has been achieved under the special perspective afforded by Feynman's 
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postulate concerning the local phase of a Lagrangian system, as well as with 
the Feynman-Hibbs idea of using physical world-line segments instead of 
arbitrary straight lines for defining the subsets of paths contributing to the 
propagation kernel. Bear in mind, however, that equation (3.14) is the funda- 
mental result in quantum kinematics. Equation (3.14) is valid even if the 
complete symmetry group G has no genuine ray extensions by U(1). In this 
case, the phase function q~(x; q) is a gauge artifact which one may set equal 
to zero, because two-cocycles are just coboundaries for groups of such a 
kind. (As is well known, this is the case for the Poincar6 group, which is one 
of the most conspicuous examples of such a group.) Nonetheless, transition 
probability amplitudes for irreducible configuration states are still given by 
equation (3.14) [with q~(x; q) = 0] even in such a case. 

This is not the place to go into all the mathematical intricacies of the 
quantum kinematic approach to dynamics. (Neither was that the spirit of this 
paper.) However, here we shall make some remarks concerning the physical 
possibilities of the sketched formalism. 

The main purpose in this trend of ideas would be to detach the quantum 
formalism from the classical formalism as far as possible, in order to obtain 
a self-contained quantum theory with its own syntactic and semantic rules, 
As we have seen, one can develop a new group-theoretic quantization method, 
in which the complete symmetry structure (associated with conservation laws 
and superselection rules) dictates the quantum rule, from which interesting 
quantum models can be expected to obtain. In this state of affairs, whether 
the resulting models admit a reasonable classical analog or not depends on 
the nature of things. The following points must be underlined concerning 
this issue. (a) Such a theory would correspond to a 'geometrization' of 
quantum dynamics, for it should stem exclusively from the assumed symme- 
tries of the system. (b) The standard formulation of quantum mechanics could 
be recovered herein; as a matter of fact, it should appear as a particular case 
of the new generalized theory. (c) The new formulation uses a group-theoretic 
'quantization' procedure (which is indeed the only notion that has been 
essentially at stake in this study). 

Furthermore, the attained formalism is intrinsically 'relativistic' (in a 
rather general sense). In fact, it must be borne in mind that quantum kinematics 
is quite independent of the physical meaning attached to the variables (x l, 
. . . .  x ~) used in X as long as these are 'preferred variables' for the action of 
G. The x's correspond to both the independent and the dependent variables 
of the theory; moreover, in the previous context, some of the alluded to x's 
may be fields defined in a spacetime arena. Nevertheless, it is not necessary 
to specify whether X corresponds to an 'external' or an 'internal' configuration 
space in order for the formalism to hold. However, if the subspace of the 
independent variables contained in X is an 'external' space, the quantum 
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kinematic approach to dynamics incorporates in a rather natural way the 
'special relativity theory' (Mariwalla, 1975) attached to the given action in 
X of the complete symmetry group of the system. 

Note in particular that there is no need for the configuration variables 
to be Cartesian coordinates. In this fashion, the traditional dictum that 'one 
must quantize only in rectangular coordinates' (as required, in fact, by the 
usual Heisenberg commutation relations) is superseded in this theory. Such 
a proviso is certainly not a satisfactory state of affairs; one should not have so 
basic a criterion of quantization stated in such a strong coordinate-dependent 
manner. As an important related fact, let us also recall that the 'canonical 
quantization rule' is more formally apparent than effectively valid (Komar, 
1971). It seems that non-Abelian group quantization offers a possible way 
out to this dilemma of contemporary quantum physics. 

The interest of the quantization problem is not purely academic, of 
course, for it has many important consequences. As a case in point, which 
was already mentioned in the Introduction, here one faces one of the insur- 
mountable facts that make quantization of general relativity theory so difficult; 
canonical quantization, as it stands, forbids the use of the principle of general 
covariance, while, on the other hand, general relativistic models of curved 
spacetime forbid the use of globally Cartesian coordinates. Certainly, this 
fundamental problem of quantum kinematics has remained unsolved, notwith- 
standing the interesting approaches to functional integration over geometries 
(Mottola, 1995) or to path integrals on homogeneous manifolds (Marinov, 
1995), or even to time-displaced interactions to implement path-integral quan- 
tization (Schulman, 1995), which have been reported recently. 

Indeed, much work has been devoted during recent years to developing 
a suitable quantum kinematic theory for curved spacetime, using Hartle's 
sum-over-histories generalized quantum mechanics (Gell-Mann and Hartle, 
1992; Whelan, 1994), which seems to be particularly powerful for building 
models of quantum cosmology (Halliwell and Ortiz, 1993). As a matter of 
fact, there are several formal aspects of non-Abelian quantum kinematics 
which seem to appear also in the Hartle formalism (Omn~s, 1992). There 
are significant differences, however. For instance, as far as we can see, 
according to the present quantum kinematic approach, one could identify X 
with curved spacetime and a set of metric fields. In this way, the symmetries 
of the metric field g~(x) would play the main role in a quantum theory of 
curved spacetime. We did not touch on this subject in this paper, of course, 
but in our opinion it deserves some attention. 

Finally, we would also like to add the following remark. Once we are 
in possession of the group-quantization technique, we can go the other way 
around and consider the quantum kinematic theory of a given physically 
relevant Lie group as a complete dynamical theory. Thus, it seems reasonable 



Non-Abelian Quantum Kinematics and Dynamics 869 

to expect that group quantization of the Poincar6 group, by itself, could 
produce interesting quantum field models for all those elementary physical 
systems for which the familiar realization of Poincar6 transformations in 
Minkowski space-time could be considered (by definition) as a complete 
action of the group. [In this sense, see, for instance, the recent work of 
Navarro et al. (1996), which comes very close to this idea.] 

We thus finish our 'heuristic approach' to non-Abelian quantum kinemat- 
ics. Needless to say, in the physical motivation presented in this paper, we 
do not pretend to have solved a theoretical problem in a rigorous manner. 
Rather, what has been done here is to try to pose some fundamental questions 
on symmetry and dynamics, as briefly and reasonably as possible, which lead 
to a serious and intriguing problem. As an extra bonus, a framework emerges 
from this study in order to perform the systematic group-theoretic steps which 
could afford an essentially new formulation of quantum mechanics. At least, 
we hope, the reader may now share our conviction that non-Abelian quantum 
kinematics is an important and timely issue. 

We have decided to publish these ideas as they stand, since they afford 
a consistent group-theoretic framework for quantum physics, which seems 
promising. They are worth much further research by people interested in the 
fundamental role of symmetry in physics. 
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